Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Invest Dermatol ; 144(4): 748-754, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38099888

RESUMO

Pachyonychia congenita (PC) is a dominantly inherited genetic disorder of cornification. PC stands out among other genodermatoses because despite its rarity, it has been the focus of a very large number of pioneering translational research efforts over the past 2 decades, mostly driven by a patient support organization, the Pachyonychia Congenita Project. These efforts have laid the ground for innovative strategies that may broadly impact approaches to the management of other inherited cutaneous and noncutaneous diseases. This article outlines current avenues of research in PC, expected outcomes, and potential hurdles.


Assuntos
Ceratodermia Palmar e Plantar , Paquioníquia Congênita , Humanos , Paquioníquia Congênita/diagnóstico , Paquioníquia Congênita/genética , Paquioníquia Congênita/terapia , Ceratodermia Palmar e Plantar/genética , Administração Cutânea , Apoptose , Diferenciação Celular , Mutação
2.
J Clin Invest ; 126(6): 2356-66, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27183391

RESUMO

Palmoplantar keratoderma (PPK) are debilitating lesions that arise in individuals with pachyonychia congenita (PC) and feature upregulation of danger-associated molecular patterns and skin barrier regulators. The defining features of PC-associated PPK are reproduced in mice null for keratin 16 (Krt16), which is commonly mutated in PC patients. Here, we have shown that PPK onset is preceded by oxidative stress in footpad skin of Krt16-/- mice and correlates with an inability of keratinocytes to sustain nuclear factor erythroid-derived 2 related factor 2-dependent (NRF2-dependent) synthesis of the cellular antioxidant glutathione (GSH). Additionally, examination of plantar skin biopsies from individuals with PC confirmed the presence of high levels of hypophosphorylated NRF2 in lesional tissue. In Krt16-/- mice, genetic ablation of Nrf2 worsened spontaneous skin lesions and accelerated PPK development in footpad skin. Hypoactivity of NRF2 in Krt16-/- footpad skin correlated with decreased levels or activity of upstream NRF2 activators, including PKCδ, receptor for activated C kinase 1 (RACK1), and p21. Topical application of the NRF2 activator sulforaphane to the footpad of Krt16-/- mice prevented the development of PPK and normalized redox balance via regeneration of GSH from existing cellular pools. Together, these findings point to oxidative stress and dysfunctional NRF2 as contributors to PPK pathogenesis, identify K16 as a regulator of NRF2 activation, and suggest that pharmacological activation of NRF2 should be further explored for PC treatment.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Paquioníquia Congênita/metabolismo , Animais , Modelos Animais de Doenças , Glutationa/biossíntese , Humanos , Isotiocianatos/farmacologia , Queratina-16/genética , Queratina-16/metabolismo , Ceratodermia Palmar e Plantar/genética , Ceratodermia Palmar e Plantar/metabolismo , Ceratodermia Palmar e Plantar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/deficiência , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Paquioníquia Congênita/genética , Paquioníquia Congênita/patologia , Fenótipo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sulfóxidos
3.
Mol Imaging Biol ; 18(1): 34-42, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26169581

RESUMO

PURPOSE: Small interfering RNAs (siRNAs) specifically and potently inhibit target gene expression. Pachyonychia congenita (PC) is a skin disorder caused by mutations in genes encoding keratin (K) 6a/b, K16, and K17, resulting in faulty intermediate filaments. A siRNA targeting a single nucleotide, PC-relevant mutation inhibits K6a expression and has been evaluated in the clinic with encouraging results. PROCEDURES: To better understand the pathophysiology of PC, and develop a model system to study siRNA delivery and visualize efficacy in skin, wild type (WT) and mutant K6a complementary DNAs (cDNAs) were fused to either enhanced green fluorescent protein or tandem tomato fluorescent protein cDNA to allow covisualization of mutant and WT K6a expression in mouse footpad skin using a dual fluorescence in vivo confocal imaging system equipped with 488 and 532 nm lasers. RESULTS: Expression of mutant K6a/reporter resulted in visualization of keratin aggregates, while expression of WT K6a/reporter led to incorporation into filaments. Addition of mutant K6a-specific siRNA resulted in inhibition of mutant, but not WT, K6a/reporter expression. CONCLUSIONS: Intravital imaging offers subcellular resolution for tracking functional activity of siRNA in real time and enables detailed analyses of therapeutic effects in individual mice to facilitate development of nucleic acid-based therapeutics for skin disorders.


Assuntos
Expressão Gênica , Queratinas/genética , Imagem Molecular/métodos , Proteínas Mutantes/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/metabolismo , Pele/metabolismo , Animais , Linhagem Celular , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Humanos , Injeções Intradérmicas , Queratinas/metabolismo , Camundongos , Mutação/genética , Plasmídeos/metabolismo , Agregados Proteicos
4.
Methods Mol Biol ; 1372: 1-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26530911

RESUMO

Monogenic skin diseases arise from well-defined single gene mutations, and in some cases a single point mutation. As the target cells are superficial, these diseases are ideally suited for treatment by nucleic acid-based therapies as well as monitoring through a variety of noninvasive imaging technologies. Despite the accessibility of the skin, there remain formidable barriers for functional delivery of nucleic acids to the target cells within the dermis and epidermis. These barriers include the stratum corneum and the layered structure of the skin, as well as more locally, the cellular, endosomal and nuclear membranes. A wide range of technologies for traversing these barriers has been described and moderate success has been reported for several approaches. The lessons learned from these studies include the need for combinations of approaches to facilitate nucleic acid delivery across these skin barriers and then functional delivery across the cellular and nuclear membranes for expression (e.g., reporter genes, DNA oligonucleotides or shRNA) or into the cytoplasm for regulation (e.g., siRNA, miRNA, antisense oligos). The tools for topical delivery that have been evaluated include chemical, physical and electrical methods, and the development and testing of each of these approaches has been greatly enabled by imaging tools. These techniques allow delivery and real time monitoring of reporter genes, therapeutic nucleic acids and also triplex nucleic acids for gene editing. Optical imaging is comprised of a number of modalities based on properties of light-tissue interaction (e.g., scattering, autofluorescence, and reflectance), the interaction of light with specific molecules (e.g., absorbtion, fluorescence), or enzymatic reactions that produce light (bioluminescence). Optical imaging technologies operate over a range of scales from macroscopic to microscopic and if necessary, nanoscopic, and thus can be used to assess nucleic acid delivery to organs, regions, cells and even subcellular structures. Here we describe the animal models, reporter genes, imaging approaches and general strategies for delivery of nucleic acids to cells in the skin for local expression (e.g., plasmid DNA) or gene silencing (e.g., siRNA) with the intent of developing nucleic acid-based therapies to treat diseases of the skin.


Assuntos
Técnicas de Transferência de Genes , Imagem Molecular/métodos , Ácidos Nucleicos/genética , Pele/metabolismo , Animais , Modelos Animais de Doenças , Expressão Gênica , Genes Reporter , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Humanos , Medições Luminescentes/métodos , Camundongos , Camundongos Transgênicos , Microscopia/métodos , Plasmídeos/administração & dosagem , Plasmídeos/genética , RNA Interferente Pequeno/genética , Dermatopatias/genética , Dermatopatias/terapia
5.
Proc Natl Acad Sci U S A ; 112(12): E1433-42, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25713383

RESUMO

Extracellular vesicles (EVs), specifically exosomes and microvesicles (MVs), are presumed to play key roles in cell-cell communication via transfer of biomolecules between cells. The biogenesis of these two types of EVs differs as they originate from either the endosomal (exosomes) or plasma (MVs) membranes. To elucidate the primary means through which EVs mediate intercellular communication, we characterized their ability to encapsulate and deliver different types of macromolecules from transiently transfected cells. Both EV types encapsulated reporter proteins and mRNA but only MVs transferred the reporter function to recipient cells. De novo reporter protein expression in recipient cells resulted only from plasmid DNA (pDNA) after delivery via MVs. Reporter mRNA was delivered to recipient cells by both EV types, but was rapidly degraded without being translated. MVs also mediated delivery of functional pDNA encoding Cre recombinase in vivo to tissues in transgenic Cre-lox reporter mice. Within the parameters of this study, MVs delivered functional pDNA, but not RNA, whereas exosomes from the same source did not deliver functional nucleic acids. These results have significant implications for understanding the role of EVs in cellular communication and for development of EVs as delivery tools. Moreover, studies using EVs from transiently transfected cells may be confounded by a predominance of pDNA transfer.


Assuntos
DNA/química , Exossomos/química , Animais , Apoptose , Transporte Biológico/genética , Comunicação Celular , Membrana Celular/metabolismo , Citometria de Fluxo , Inativação Gênica , Genes Reporter/genética , Células HEK293 , Humanos , Integrases/metabolismo , Lipídeos/química , Substâncias Macromoleculares/química , Camundongos , Camundongos Transgênicos , Microscopia de Força Atômica , Microscopia Confocal , Microscopia de Fluorescência , Fosfatidilserinas/química , Plasmídeos , Polietilenoglicóis/química , RNA Mensageiro/metabolismo , Tetraspanina 30/química
6.
J Dermatol Sci ; 77(3): 156-65, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25656049

RESUMO

BACKGROUND: Pachyonychia congenita (PC) is a skin disorder resulting from mutations in keratin (K) proteins including K6a, K6b, K16, and K17. One of the major symptoms is painful plantar keratoderma. The pathogenic sequelae resulting from the keratin mutations remain unclear. OBJECTIVE: To better understand PC pathogenesis. METHODS: RNA profiling was performed on biopsies taken from PC-involved and uninvolved plantar skin of seven genotyped PC patients (two K6a, one K6b, three K16, and one K17) as well as from control volunteers. Protein profiling was generated from tape-stripping samples. RESULTS: A comparison of PC-involved skin biopsies to adjacent uninvolved plantar skin identified 112 differentially-expressed mRNAs common to patient groups harboring K6 (i.e., both K6a and K6b) and K16 mutations. Among these mRNAs, 25 encode structural proteins including keratins, small proline-rich and late cornified envelope proteins, 20 are related to metabolism and 16 encode proteases, peptidases, and their inhibitors including kallikrein-related peptidases (KLKs), and serine protease inhibitors (SERPINs). mRNAs were also identified to be differentially expressed only in K6 (81) or K16 (141) patient samples. Furthermore, 13 mRNAs were identified that may be involved in pain including nociception and neuropathy. Protein profiling, comparing three K6a plantar tape-stripping samples to non-PC controls, showed changes in the PC corneocytes similar, but not identical, to the mRNA analysis. CONCLUSION: Many differentially-expressed genes identified in PC-involved skin encode components critical for skin barrier homeostasis including keratinocyte proliferation, differentiation, cornification, and desquamation. The profiling data provide a foundation for unraveling the pathogenesis of PC and identifying targets for developing effective PC therapeutics.


Assuntos
Queratinas/genética , Paquioníquia Congênita/genética , RNA Mensageiro/análise , Transcriptoma , Regulação para Baixo , Enzimas/genética , Perfilação da Expressão Gênica , Humanos , Queratina-16/genética , Queratina-17/genética , Queratina-6/genética , Análise de Sequência com Séries de Oligonucleotídeos , Paquioníquia Congênita/complicações , Dor/genética , Regulação para Cima
8.
Proc Natl Acad Sci U S A ; 110(48): 19537-42, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218583

RESUMO

Mutations in the type I keratin 16 (Krt16) and its partner type II keratin 6 (Krt6a, Krt6b) cause pachyonychia congenita (PC), a disorder typified by dystrophic nails, painful hyperkeratotic calluses in glabrous skin, and lesions involving other epithelial appendages. The pathophysiology of these symptoms and its relationship to settings in which Krt16 and Krt6 are induced in response to epidermal barrier stress are poorly understood. We report that hyperkeratotic calluses arising in the glabrous skin of individuals with PC and Krt16 null mice share a gene expression signature enriched in genes involved in inflammation and innate immunity, in particular damage-associated molecular patterns. Transcriptional hyper-activation of damage-associated molecular pattern genes occurs following de novo chemical or mechanical irritation to ear skin and in spontaneously arising skin lesions in Krt16 null mice. Genome-wide expression analysis of normal mouse tail skin and benign proliferative lesions reveals a tight, context-dependent coregulation of Krt16 and Krt6 with genes involved in skin barrier maintenance and innate immunity. Our results uncover a role for Krt16 in regulating epithelial inflammation that is relevant to genodermatoses, psoriasis, and cancer and suggest a avenue for the therapeutic management of PC and related disorders.


Assuntos
Redes Reguladoras de Genes/imunologia , Imunidade Inata/imunologia , Queratina-16/metabolismo , Queratina-6/metabolismo , Paquioníquia Congênita/imunologia , Animais , Western Blotting , Primers do DNA/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética , Humanos , Imunidade Inata/genética , Camundongos , Análise em Microsséries , Microscopia Eletrônica de Transmissão , Paquioníquia Congênita/patologia , Reação em Cadeia da Polimerase em Tempo Real
9.
Nat Med ; 19(12): 1625-1631, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24240185

RESUMO

Tumor recurrence represents a major clinical challenge. Our data show that emergent recurrent tumors acquire a phenotype radically different from that of their originating primary tumors. This phenotype allows them to evade a host-derived innate immune response elicited by the progression from minimal residual disease (MRD) to actively growing recurrence. Screening for this innate response predicted accurately in which mice recurrence would occur. Premature induction of recurrence resensitized MRD to the primary therapy, suggesting a possible paradigm shift for clinical treatment of dormant disease in which the current expectant approach is replaced with active attempts to uncover MRD before evolution of the escape phenotype is complete. By combining screening with second-line treatments targeting innate insensitivity, up to 100% of mice that would have otherwise relapsed were cured. These data may open new avenues for early detection and appropriately timed, highly targeted treatment of tumor recurrence irrespective of tumor type or frontline treatment.


Assuntos
Imunidade Inata/fisiologia , Melanoma Experimental/diagnóstico , Recidiva Local de Neoplasia/diagnóstico , Neoplasias Cutâneas/diagnóstico , Linfócitos T/imunologia , Evasão Tumoral/fisiologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Detecção Precoce de Câncer/métodos , Feminino , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/imunologia , Neoplasia Residual , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Células Tumorais Cultivadas
10.
Mol Ther Nucleic Acids ; 2: e129, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24150576

RESUMO

Despite the development of potent siRNAs that effectively target genes responsible for skin disorders, translation to the clinic has been hampered by inefficient delivery through the stratum corneum barrier and into the live cells of the epidermis. Although hypodermic needles can be used to transport siRNA through the stratum corneum, this approach is limited by pain caused by the injection and the small volume of tissue that can be accessed by each injection. The use of microneedle arrays is a less painful method for siRNA delivery, but restricted payload capacity limits this approach to highly potent molecules. To address these challenges, a commercially available motorized microneedle array skin delivery device was evaluated. This device combines the positive elements of both hypodermic needles and microneedle array technologies with little or no pain to the patient. Application of fluorescently tagged self-delivery (sd)-siRNA to both human and murine skin resulted in distribution throughout the treated skin. In addition, efficient silencing (78% average reduction) of reporter gene expression was achieved in a transgenic fluorescent reporter mouse skin model. These results indicate that this device effectively delivers functional sd-siRNA with an efficiency that predicts successful clinical translation.Molecular Therapy-Nucleic Acids (2013) 2, e129; doi:10.1038/mtna.2013.56; published online 22 October 2013.

11.
J Control Release ; 166(3): 211-9, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23313112

RESUMO

The development of siRNA-based gene silencing therapies has significant potential for effectively treating debilitating genetic, hyper-proliferative or malignant skin conditions caused by aberrant gene expression. To be efficacious and widely accepted by physicians and patients, therapeutic siRNAs must access the viable skin layers in a stable and functional form, preferably without painful administration. In this study we explore the use of minimally-invasive steel microneedle devices to effectively deliver siRNA into skin. A simple, yet precise microneedle coating method permitted reproducible loading of siRNA onto individual microneedles. Following recovery from the microneedle surface, lamin A/C siRNA retained full activity, as demonstrated by significant reduction in lamin A/C mRNA levels and reduced lamin A/C protein in HaCaT keratinocyte cells. However, lamin A/C siRNA pre-complexed with a commercial lipid-based transfection reagent (siRNA lipoplex) was less functional following microneedle coating. As Accell-modified "self-delivery" siRNA targeted against CD44 also retained functionality after microneedle coating, this form of siRNA was used in subsequent in vivo studies, where gene silencing was determined in a transgenic reporter mouse skin model. Self-delivery siRNA targeting the reporter (luciferase/GFP) gene was coated onto microneedles and delivered to mouse footpad. Quantification of reporter mRNA and intravital imaging of reporter expression in the outer skin layers confirmed functional in vivo gene silencing following microneedle delivery of siRNA. The use of coated metal microneedles represents a new, simple, minimally-invasive, patient-friendly and potentially self-administrable method for the delivery of therapeutic nucleic acids to the skin.


Assuntos
Sistemas de Liberação de Medicamentos , Inativação Gênica , RNA Interferente Pequeno/administração & dosagem , Pele/metabolismo , Aço Inoxidável , Animais , Técnicas de Cultura de Células , Linhagem Celular , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Desenho de Equipamento , Proteínas de Fluorescência Verde/genética , Humanos , Queratinócitos/metabolismo , Lamina Tipo A/genética , Camundongos , Camundongos Transgênicos , Microinjeções , Agulhas , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacocinética , Pele/ultraestrutura , Dermatopatias/genética , Dermatopatias/terapia , Transfecção
12.
Nucleic Acid Ther ; 22(6): 438-43, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23098239

RESUMO

Development of RNA interference (RNAi)-based therapeutics has been hampered by the lack of effective and efficient means of delivery. Reliable model systems for screening and optimizing delivery of RNAi-based agents in vivo are crucial for preclinical research aimed at advancing nucleic acid-based therapies. We describe here a dual fluorescent reporter xenograft melanoma model prepared by intradermal injection of human A375 melanoma cells expressing tandem tomato fluorescent protein (tdTFP) containing a small interfering RNA (siRNA) target site as well as enhanced green fluorescent protein (EGFP), which is used as a normalization control. Intratumoral injection of a siRNA specific to the incorporated siRNA target site, complexed with a cationic lipid that has been optimized for in vivo delivery, resulted in 65%±11% knockdown of tdTFP relative to EGFP quantified by in vivo imaging and 68%±10% by reverse transcription-quantitative polymerase chain reaction. No effect was observed with nonspecific control siRNA treatment. This model provides a platform on which siRNA delivery technologies can be screened and optimized in vivo.


Assuntos
Melanoma/patologia , Interferência de RNA , RNA Interferente Pequeno/genética , Neoplasias Cutâneas/patologia , Animais , Linhagem Celular Tumoral , Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Lentivirus/genética , Luciferases/biossíntese , Luciferases/genética , Melanoma/metabolismo , Camundongos , Transplante de Neoplasias , Imagem Óptica , Regiões Promotoras Genéticas , Neoplasias Cutâneas/metabolismo
13.
Proc Natl Acad Sci U S A ; 109(33): 13171-6, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22847412

RESUMO

The polyanionic nature of oligonucleotides and their enzymatic degradation present challenges for the use of siRNA in research and therapy; among the most notable of these is clinically relevant delivery into cells. To address this problem, we designed and synthesized the first members of a new class of guanidinium-rich amphipathic oligocarbonates that noncovalently complex, deliver, and release siRNA in cells, resulting in robust knockdown of target protein synthesis in vitro as determined using a dual-reporter system. The organocatalytic oligomerization used to synthesize these co-oligomers is step-economical and broadly tunable, affording an exceptionally quick strategy to explore chemical space for optimal siRNA delivery in varied applications. The speed and versatility of this approach and the biodegradability of the designed agents make this an attractive strategy for biological tool development, imaging, diagnostics, and therapeutic applications.


Assuntos
Carbonatos/química , Guanidina/química , Queratinócitos/metabolismo , RNA Interferente Pequeno/metabolismo , Transporte Biológico/efeitos dos fármacos , Carbonatos/síntese química , Carbonatos/toxicidade , Morte Celular/efeitos dos fármacos , Células Cultivadas , Citometria de Fluxo , Técnicas de Transferência de Genes , Genes Reporter/genética , Proteínas de Fluorescência Verde/metabolismo , Guanidina/síntese química , Guanidina/toxicidade , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Luz , Solanum lycopersicum/metabolismo , Microscopia de Fluorescência , RNA Interferente Pequeno/toxicidade , Espalhamento de Radiação
14.
Hum Gene Ther ; 23(8): 816-23, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22480249

RESUMO

Treatment of skin disorders with short interfering RNA (siRNA)-based therapeutics requires the development of effective delivery methodologies that reach target cells in affected tissues. Successful delivery of functional siRNA to the epidermis requires (1) crossing the stratum corneum, (2) transfer across the keratinocyte membrane, followed by (3) incorporation into the RNA-induced silencing complex. We have previously demonstrated that treatment with microneedle arrays loaded with self-delivery siRNA (sd-siRNA) can achieve inhibition of reporter gene expression in a transgenic mouse model. Furthermore, treatment of human cultured epidermal equivalents with sd-siRNA resulted in inhibition of target gene expression. Here, we demonstrate inhibition of CD44, a gene that is uniformly expressed throughout the epidermis, by sd-siRNA both in vitro (cultured human epidermal skin equivalents) and in vivo (full-thickness human skin equivalents xenografted on immunocompromised mice). Treatment of human skin equivalents with CD44 sd-siRNA markedly decreased CD44 mRNA levels, which led to a reduction of the target protein as confirmed by immunodetection in epidermal equivalent sections with a CD44-specific antibody. Taken together, these results demonstrate that sd-siRNA, delivered by microneedle arrays, can reduce expression of a targeted endogenous gene in a human skin xenograft model.


Assuntos
Receptores de Hialuronatos/metabolismo , RNA Interferente Pequeno/administração & dosagem , Pele/metabolismo , Animais , Células Cultivadas , Feminino , Expressão Gênica , Genes Reporter , Humanos , Receptores de Hialuronatos/genética , Imuno-Histoquímica , Queratinócitos/metabolismo , Camundongos , Camundongos SCID , Agulhas , Polimetil Metacrilato , Álcool de Polivinil , Solubilidade , Transplante Heterólogo
15.
J Invest Dermatol ; 132(6): 1627-35, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22402445

RESUMO

Epidermolytic palmoplantar keratoderma (EPPK) is one of >30 autosomal-dominant human keratinizing disorders that could benefit from RNA interference (RNAi)-based therapy. EPPK is caused by mutations in the keratin 9 (KRT9) gene, which is exclusively expressed in thick palm and sole skin where there is considerable keratin redundancy. This, along with the fact that EPPK is predominantly caused by a few hotspot mutations, makes it an ideal proof-of-principle model skin disease to develop gene-specific, as well as mutation-specific, short interfering RNA (siRNA) therapies. We have developed a broad preclinical RNAi-based therapeutic package for EPPK containing generic KRT9 siRNAs and allele-specific siRNAs for four prevalent mutations. Inhibitors were systematically identified in vitro using a luciferase reporter gene assay and validated using an innovative dual-Flag/Strep-TagII quantitative immunoblot assay. siKRT9-1 and siKRT9-3 were the most potent generic K9 inhibitors, eliciting >85% simultaneous knockdown of wild-type and mutant K9 protein synthesis at picomolar concentrations. The allele-specific inhibitors displayed similar potencies and, importantly, exhibited strong specificities for their target dominant-negative alleles with little or no effect on wild-type K9. The most promising allele-specific siRNA, siR163Q-13, was tested in a mouse model and was confirmed to preferentially inhibit mutant allele expression in vivo.


Assuntos
Terapia Genética/métodos , Queratina-9/genética , Ceratodermia Palmar e Plantar Epidermolítica/genética , Ceratodermia Palmar e Plantar Epidermolítica/terapia , Medicina de Precisão/métodos , RNA Interferente Pequeno/farmacologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Epiderme/fisiologia , Feminino , Humanos , Queratinócitos/citologia , Rim/citologia , Luciferases/genética , Camundongos , Camundongos Endogâmicos
16.
J Am Acad Dermatol ; 66(6): e193-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21601946

RESUMO

BACKGROUND: Pachyonychia congenita (PC), a rare autosomal-dominant keratin disorder caused by mutations in keratin genes KRT6A/B, KRT16, or KRT17, is characterized by painful plantar keratoderma and hypertrophic nail dystrophy. Available studies assessing oral retinoid treatment for PC are limited to a few case reports. OBJECTIVE: We sought to assess overall effectiveness, adverse effects, and patient perspective in patients with PC receiving oral retinoids. METHODS: In a questionnaire-based retrospective cross-sectional survey of 30 patient with PC assessing oral retinoids (10-50 mg/d for 1-240 months), we determined the clinical score, satisfaction score, visual analog pain scale, and adverse effects. RESULTS: In 50% of patients there was thinning of hyperkeratoses (average improvement 1.6 on a scale from -3 to +3) (95% confidence interval 1.2-1.9, P < .001). In all, 14% observed amelioration of their pachyonychia; 79% did not experience any nail change. The self-reported overall satisfaction score with oral retinoid treatment was 2 or greater in 50% of the patients (mean 4.5 on a scale of 1-10). Although 33% reported decreased and 27% increased plantar pain with treatment, 40% did not notice any pain change. All patients experienced adverse effects, and 83% reported to have discontinued medication. Risk/benefit analysis favored lower retinoid doses (≤25 mg/d) over a longer time period (>5 months), compared with higher doses (>25 mg/d) for a shorter time (≤5 months). LIMITATIONS: The retrospective, cross-sectional study design is prone to a recall bias. CONCLUSION: Oral retinoids are effective in some patients with PC. However, many patients discontinued medication because adverse effects outweighed the benefits. Careful dose titration is warranted in patients informed about potential adverse effects.


Assuntos
Fármacos Dermatológicos/uso terapêutico , Paquioníquia Congênita/tratamento farmacológico , Retinoides/uso terapêutico , Acitretina/uso terapêutico , Administração Oral , Adulto , Estudos Transversais , Fármacos Dermatológicos/administração & dosagem , Fármacos Dermatológicos/efeitos adversos , Relação Dose-Resposta a Droga , Feminino , Humanos , Isotretinoína/uso terapêutico , Masculino , Paquioníquia Congênita/genética , Medição da Dor , Satisfação do Paciente , Retinoides/administração & dosagem , Retinoides/efeitos adversos , Estudos Retrospectivos , Inquéritos e Questionários , Resultado do Tratamento
17.
ACS Nano ; 5(12): 9977-83, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22077198

RESUMO

Small interfering RNA (siRNA) is a highly potent drug in gene-based therapy with a challenge of being delivered in a sustained manner. Nanoparticle drug delivery systems allow for incorporating and controlled release of therapeutic payloads. We demonstrate that solid lipid nanoparticles can incorporate and provide sustained release of siRNA. Tristearin solid lipid nanoparticles, made by nanoprecipitation, were loaded with siRNA (4.4-5.5 wt % loading ratio) using a hydrophobic ion pairing approach that employs the cationic lipid DOTAP. Intradermal injection of these nanocarriers in mouse footpads resulted in prolonged siRNA release over a period of 10-13 days. In vitro cell studies showed that the released siRNA retained its activity. Nanoparticles developed in this study offer an alternative approach to polymeric nanoparticles for encapsulation and sustained delivery of siRNA with the advantage of being prepared from physiologically well-tolerated materials.


Assuntos
Preparações de Ação Retardada/química , Nanocápsulas/administração & dosagem , Nanocápsulas/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Triglicerídeos/química , Animais , Preparações de Ação Retardada/administração & dosagem , Difusão , Inativação Gênica , Teste de Materiais , Camundongos
19.
J Invest Dermatol ; 131(5): 1037-44, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21248764

RESUMO

Although RNA interference offers therapeutic potential for treating skin disorders, delivery hurdles have hampered clinical translation. We have recently demonstrated that high pressure, resulting from intradermal injection of large liquid volumes, facilitated nucleic acid uptake by keratinocytes in mouse skin. Furthermore, similar intradermal injections of small interfering RNA (siRNA; TD101) into pachyonychia congenita (PC) patient foot lesions resulted in improvement. Unfortunately, the intense pain associated with hypodermic needle administration to PC lesions precludes this as a viable delivery option for this disorder. To investigate siRNA uptake by keratinocytes, an organotypic epidermal model, in which pre-existing endogenous gene or reporter gene expression can be readily monitored, was used to evaluate the effectiveness of "self-delivery" siRNA (i.e., siRNA chemically modified to enhance cellular uptake). In this model system, self-delivery siRNA treatment resulted in reduction of pre-existing fluorescent reporter gene expression under conditions in which unmodified controls had little or no effect. Additionally, treatment of PC epidermal equivalents with self-delivery "TD101" siRNA resulted in marked reduction of mutant keratin 6a mRNA with little or no effect on wild-type expression. These results indicate that chemical modification of siRNA may overcome certain limitations to transdermal delivery (specifically keratinocyte uptake) and may have clinical utility for inhibition of gene expression in the skin.


Assuntos
Regulação da Expressão Gênica , Queratina-6/antagonistas & inibidores , Paquioníquia Congênita/genética , Paquioníquia Congênita/terapia , RNA Interferente Pequeno/uso terapêutico , Linhagem Celular , Genes Reporter , Humanos , Queratina-6/genética , Queratinócitos/metabolismo , Modelos Biológicos , Pele/metabolismo
20.
Sci Rep ; 1: 158, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22355673

RESUMO

The accessibility of skin makes it an ideal target organ for nucleic acid-based therapeutics; however, effective patient-friendly delivery remains a major obstacle to clinical utility. A variety of limited and inefficient methods of delivering nucleic acids to keratinocytes have been demonstrated; further advances will require well-characterized reagents, rapid noninvasive assays of delivery, and well-developed skin model systems. Using intravital fluorescence and bioluminescence imaging and a standard set of reporter plasmids we demonstrate transfection of cells in mouse and human xenograft skin using intradermal injection and two microneedle array delivery systems. Reporter gene expression could be detected in individual keratinocytes, in real-time, in both mouse skin as well as human skin xenografts. These studies revealed that non-invasive intravital imaging can be used as a guide for developing gene delivery tools, establishing a benchmark for comparative testing of nucleic acid skin delivery technologies.


Assuntos
Queratinócitos/metabolismo , Plasmídeos/administração & dosagem , Animais , Sistemas de Liberação de Medicamentos , Epiderme/metabolismo , Feminino , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes , Camundongos , Microinjeções , Microscopia de Fluorescência , Plasmídeos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transplante de Pele , Transfecção , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...